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Duality relation for the Maxwell system
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This paper is intended to establish a link between the vector Maxwell system for three-dime(&yreaid
2D finite photonic crystals in the low-frequency limit. For this, we generalize the classical results of Keller and
Dykhne(chessboard problento periodic media described by piecewise continuous permittivity profiles: our
theorem enlights the result of Mendelsgrolycrystalline and multiphase medglia the framework of homog-
enization theory of elliptic operatork fine, we give illustrative examples by using both integral equation and
variational approaches via the so-called method of fictitious charges and finite-element method.
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I. INTRODUCTION two incompressible phases. The duality and phase inter-
change relations of Berdichevski were extended to aniso-
Some mathematical works devoted to the theory of comtropic composite materials by Helsing, Milton, and Movchan
posites go back to Wiengf] by interchanging the roles of [8] together with numerical results of high accuracy and
the background and matrix in the Lorentz-Lorenz formula. ANemat-Nasser and Ni9] obtained duality transformations
classical theorem is that of Kellg2], which found a relation for three-dimensional anisotropic bodies with stress and
between the transverse effective conductivity of an array ostrain fields independent of the; coordinate. Milton and
cylinders and the conductivity when the phases are intertMovchan[10] found an equivalence between planar elastic-
changed. The essence of Keller’s theorem is that if in a twoity problems and antiplane elasticity problems in inhomoge-
dimensional2D) potential problem for Laplace’s equation  neous bodies. These results and additional duality relations
is a solution for a problem with one type of inclusion, thenwere then discussed in detailed by Helsing, Milton, and
its Cauchy-Riemann partneris the solution for the problem Movchan[8]. A plethora of three-dimensional exact relations
with the dielectric constant inverted and the electric fieldfrom pyroelectricity to thermopiezoelectric composites have
rotated by 90°. In 1970, DykhnE8], using the fact that a recently been given by Grabovsky, Milton, and S§b#.
divergence-free field when rotated locally at each point by Among other things, when no explicit formulas are avail-
90° produces a curl-free field and vice versa could generalizable, it is an important matter to hagepriori estimates on
Keller's result to isotropic multiphase and polycrystalline the effective matrix in term of the statistical properties of
media. He noted that the duality relations implied exact for-each component of the composite. This is the so-called
mulas for the conductivity of phase-interchange-invariantheory of bounds which motivated a lot of contributions in
two-phase medidsuch as checkerboandand for polycrys- several fields of physics, mechanics, and mathematics. The
tals constructed from a single crystal. In Sec. Ill, we generpioneering work was done by Hashin and Shtrikmahli|
alize the results of Kellef2], Nevard and Kellef4], and  where a complete description of all possible effective tensors
Dykhne[3]: we express the homogenized permittivity of a was derived. This result was proved later by Taff:8] who
two-dimensional electrostatic problem in terms of the ho-extended the result to the anisotropic case. Then many papers
mogenized inverse permittivity up to a rotation of 90°. In theappeared in the literature among them, of which we may
particular case of a checkerboard, i.e., a planar body ofijuote Benvenistgl4] who obtained bound results in piezo-
square symmetry characterized by a piecewise constant peglectricity and Francforf15] who made a correspondence
mittivity which takes the values; ande,, it can be then between the equations of incompressible elasticity and the

deduced the well-known formuls] duality relations for conductivity.
To conclude, the rigorous mathematical theory of the ho-
Eefi= VE1E1. mogenization of elliptic operators with random coefficients

proposed by Jikov, Kozlov, and Olein{k 6] is closely re-

This formula has been generalized by Kozlov in the randomated to the Bergman-Milton theory of bounk7—21 who
case and also the asymptotic behaviore@f when g is obtained some bounds for the effective modulli of periodic
small in term of percolation threshol@s]. This formula was and random structures.
independently derived by Golden and Papanicolggju

The pioneering works of Keller and Dykhne stimulated a
large body of research: Berdichevgki] derived an exact
formula for the effective shear modulus of a checkerboard of

Il. LOW-FREQUENCY LIMIT OF THE VECTOR
MAXWELL SYSTEM

The homogenization of 3D dielectric photonic crystals

has been independently performed by Ke-®al. with the
*FAX: +44 (0) 151 794 4061 Rayleigh method(two-phase media with spherical inclu-
Electronic address: guenneau@liverpool.ac.uk siong [22] and by Guenneau and Zolla with the multiple-
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FIG. 1. The fixed sef) and its “scaffolding” (), for a fixed 7.

scale methodmedia described by coercive and bounded per-
mittivity profiles) [23]. The last authors use a limit analysis

technique in which one lets the periagitend to-zero and,

hence, the number of elementary cells to infinity, while keep-

ing the wavelength = 27/k, and the domaiif); containing
the cells fixed(see Fig. 1

Moreover, an oscillating magnetic field,, is defined as
the unique solution of the problen®{) in [L 2 (R9)7]3:

0
H
(P”){m)
def

where the diffracted magnetic f|eleld
Silver-Muller radiation conditions:

rot(e, *rot H,)—kgH,=0,
divH,=0,

H,—Hj, satisfies

namely,

1
x|/

H!=0 X ot HY +ikgHe= =
i ro ’7'077_0|X|’

||
and where e,(X)=e(X/7), &
def

(Y=10,1]). It can be proved thai, has a two-scale expan-
sion of the form

being Y® periodic

VXEQf,

H,,(X)=Ho TR

)4 ( |+ PH ( X
X, — X, — X, —

o 7y o /nY) o
whereH; : QX Y3—(2 is a function of six variables, inde-
pendent ofy, such that for alk in Q;, H;(x,-) is Y* peri-
odic.

The salient consequence is that whetends to zero, the
H,, solution of the problem®)), converges i L{,(R%)]®
to the unique solutiol of the homogemzed problerrP{:' m
[23]:

(i)
(ii)

rot(e oot H)—k3H=0,

divH=0,
def

where the diffracted magnetic field%=H—H,,. satisfies
Silver-Muller radiation conditions and where
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ehom= (eI =VV(Y)ys in Qf,

the notatior(f)ys denoting the average 6éfin Y3. Besides,
V= (Vl,Vz,V3) whereV; (j €{1,2,3)) is the unique solu-
tioninH (Y3) of the null mean of one of the three following
problems (C;) of electrostatic type:

(Kp):=di{e(Y)[V(Vj(y) —y)]}=0.

A. TM polarization deduced from the 3D case

When ¢ does not depend on the third component—
namely,s(y)=e(y1,y2)—we get

Ahom 0
€hom™ 0 '
0 0 < & > Y2

whereA, is the 2X2 matrix given by

(e)y2—(gd1V1)y2
—(8d,V1)vy2

—(ed1V2)y2
<8>Y2_<8(92V2>Y2 ’

hom™—

andV;, je{1,2, the unique solution irh-lﬁ(Yz)/R of

(P):div{e([V(V(y) —y)]}=0.

When(); is invariant itself with respect to the third compo-
nent and for the particular case of TM polarizatiphl
=u(Xq,Xp)€s3], itis clear that the result written above always
holds.

B. TM polarization via 2D homogenization

Let us now consider the TM fieldH,=u,(X;,X;)€;,
whereu,, is the unique solution of the scalar wave equation

X
s‘l(x, ;)Vun
with Sommerfeld radiation conditions

ud=0(1Nx)),

When 7 tends to O,u, tends in LZ(R?) to the u
=u(Xq,X5) unique solution of

div

+k3u

(ud—ikoaud/ax)=o(LNx]).

div(Al,VUu)+kiu=0,

where the diffracted field? satisfies the radiation conditions
and whereA/,,, is given by

<871>y2_ <871(91V:Il>y2
—(8719,V1)y2 (e

—(e719;1Vy)v2

Al = ,
om “Hye—(e719,Vo)y2

with VJ-’ the unigue solution irHﬁ(YZ)/R of
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DUALITY RELATION FOR THE MAXWELL SYSTEM
(PP):divie "H(y)[V (V] (y)—y)]}=0,
with j e{1,2}.

IIl. DUALITY CORRESPONDENCES BETWEEN 3D AND
2D ANNEX PROBLEMS

PHYSICAL REVIEW E 67, 026610 (2003

N—_— Ahom
oM det Anom)

This remarkable result—which was derived by Mendel-

We are facing a paradox: the annex problems in Secsson[24] and Nevard and Kellef4] in another homogeniza-

IIA and 1I B involve, respectively, the permittivity and its tion framework—can be straightforwardly proved thanks to
inverse. To explain this discrepancy, we establish the followthe following result due to Bouchitte25,26).

ing subtle property.
Proposition

rot{ & ponf O U(X1,X5) €3]}

. T w
=—div|R 5 AR ) Vule;s,
whereR(7/2) is the rotation matrix of angle/2: namely,
12 0
R = .
(2= _1 4

Proof. Let M be a symmetric matrix defined as

my; m O
M= m m, O =
0 0 mg3

M o)
0 mg’

we get

rot{M roff u(xy ,x,)e3]}=—

1% Ju Ju
x| 2%oxy X,
N J Ju Ju

%y | Hax,

%4

es3.

Furthermore, leM’ be defined as
, (mil miz)
M = ’ ’ ’
My My
we have
rot{M rof u(x,,x,)e3]}=—div(M'Vu)e;,
if and only if

gu  au gu _au

My +Mim—=Myy——M——,
Wox, ' ox,  2%oxy 0%

ou au au ou

My—— + Myy— =My s—— M——,
g, PPoxy o Hax, o axg

which is true ifM'=R(7/2)MR(— m/2). As a conclusion,

the results found in Secs. Il A and Il B are consistent if and

only if

’ ™ -1 ™
Ahom:R E AhomR - E )

Lemma let A, @and Af,, be the homogenized matrices
associated tow; and wi (je{1,2}) unique solutions in
H}(Y?)/C of the four following problems:

div[a(y)V(y;+w;(y))]=0,

divia’(y)V(y;+w;(y)]=0,

wherea’=a"'. Then, we have

N_— Ahom
oM det Anom)

Proof. We note tha#,,, is given by the problem of mini-
mization,

1 _ 1 -
5 Anoné- &= inf Ef L2AWEFVoly)[*d?yy,
1,021/ Y
v(y) e Hy(Y?)/C

andA, . by its dual variational problem

1 —1 g% gk H
EAhomg &= inf
ay eLiy?)

1
fszzal(y)lf*wlzdzy,

div,q(y)=0, and fyzq(y)d2y= O} )

Besides, we know that every divergence free field of
LZ(Y?) is the gradient of a function oH}(Y?), up to a
rotation, provided its average is nyll6]. Therefore, there
exists a functionveHﬁ(Yz) (up to an additive constant
such that

q(y)=R(MWu(y)),

def
whereR=R(7/2). Noting that

& +a(y)|?=|R¢* +Ra(y)|>= [RE* + Vo (y) %,

we get
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FIG. 3. Unit cellY? for Dykhne’s checkerboard problefte) on

Chom = € € Byom the left] and its varian{(b) on the right.
FIG. 2. Derivation of the effective matrix for an interchanged em O
contrast between matrix and inclusions. Anon([e1,82]) =R(¢) 0 R(—¢),
m
EA_lrrg* g where R(¢) is the rot.ation matrix of anglep and Where
2" ho em>en. The relation between the two matrices

1 Anon([€1,€2]) and Apon([€2,€1]) leads to the following
e [Ef zal<y>|R§*+Vv<y>|2d2y]. propery:
Y

v(y) e Hy(Y2)IC 0
Arond[22,61)=R(¢)| )R(—cp)
To conclude, we note tha,, is given by the following homL=2r 1 0 e&p '
problem:
with e =e18,/e ande/,=e18,/ey (note thatey,>e/).
1 1
— A/ 7= 1 — -1 242
2Ah°mZ z inf [2 fyza ()lz+Vo(y)|*d y]. B. Checkerboard problem

u(y)eH}i(YZ)/(:
The checkerboard problem is obviously a two-phase prob-

lem|cf. Fig. 3@)]. Besides, for a squared symmetityis the

case for the checkerboard problem up to a translatiaran

In this section, we illustrate our duality result with a re- P& €asily proved thatn,, is equal to R(7/2)AnonR
view of classical phase interchange identities such as the~ 7/2) and consequentonis proportional to the identity

chessboard problem for two-phase media and its variants. matrix (the effective permittivity in TM polarization is there-
fore isotropig:

IV. MISCELLANEOUS APPLICATIONS

A. Two-phase media Anon([€1,82]) =Anonf[€2,€1]) = anonl -
Let (); be a bounded photonic crystal filled with a peri- )

odic heterogeneous material with two optical indices  1he Previous result shows that
= /e, andn,=/e,. Thanks to the previous proposition, we
can deduce from the computation of the effective matrix 5 ([81,85]) = €182
Anon([£1,85]) the effective matrixApon([£2,21]) corre- hom L# 1 =21 detAnond[£1,€2])
sponding to the same structure with the reverse contcast
Fig. 2). For this we use the general property and consequently déo([1,£2])=aion=e18,. Finally,

] ) we rediscover the result of Dykhri8]:
AnomlAe)=NApon(e) for any fixed N in C,

Ahom: VE 182' .

Anonl[£1,82]),

and the duality relation. Indeed, we have

Anori[£2,81]) =18 2Anond L1 82 1) C. Variant of the checkerboard problem
Let us now consider a three-phase problem characterized
and, then, by three permittivitiese;, e,, andeg [cf. Fig. 3b)]. The
associated homogenized matrix is th@Ry([&1,£2,84]).
€182 Using the technics described above, we get the relation

Anon([&1,82]).
AeAronll21,22]) )_8182Ahon{[81182a89])

"~ detAnon([£1,82.84])

Anorll&2,81]) =
€1&7

€9,€1,

. . . . Ahorn(
In particular, for lossless dielectric materials, we have &g
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which becomes very interesting df,= ye,,. In particular, Y2
when the cellY? has a squared symmetry as shown in Fig. 3, Y2
we obtain

Apom= Ver182l =gl T

It is worth noting that considering a four-homogeneous- €1
medium problem characterized by four permittivities, ¢, 0,
andegy;, &4, deduced from Figs.(8) and 3b) by substitut-
ing Fig. 3b) into Fig. 3a) would merely lead to s

U1

€182 €183
€92,€1, s
Sgl 892

) _ 8182Ah0m([8118218915892])
detAnon([€1,€2,841,8g2])

Ahom(

which only simplifies in the trivial casey;=eg,=Ve1€5.

Nevertheless, one can still imagine some two phase variants FIG. 4. Unit cellY? with a scatterer characterized by the curve
of Dykhne’s checkerboard problem as was done by SchulF.

gassel[27,28 who noticed that there are some anisotropic
two-dimensional microstructures such that interchanging the .
phases produces the same effect as rotating the structure y)vhere[f]r denotes the jump dfacross the boundaiy, and

y . o .
90° and thereby leads to Dykhne’s formula. ny, ie{1,2,3}, denotes the projection on the axsof a

normal of . Moreover, the calculus of the anisotropic per-
mittivity can be simplified. Indeed, it had been sho{23]
that the coefficientsp; ; are given by the following simple
integral:

V. NUMERICAL RESOLUTION OF THE ANNEX
PROBLEMS

A. Method of fictitious charges as applied
to the two-phase media

To illustrate our purpose, we now make use of the method o =[s] f vin.ds &)
of fictitious chargegits dynamic analogue is the method of ] O P

fictitious source$29]), which takes benefit of the piecewise

constant permittivity and of its periodicity to solve numeri-

cally the annex problems. Let us remark thaV; is well defined o because it does not
suffer a jump across the boundary of the scatterer. This last
formula is very important for numerical implementations: it
In most applications, one has just to consider a two4s not necessary to compute the gradienVpiwhich gives
valued piecewise constant permittivity in the unique &€l rise to numerical inaccuragyo perform the calculus of the
and, more precisely, the relative permittivity yields in homogenized permittivity.
what one usually calls the scattef@ande, elsewhere. Con-
sequently, the problem we are dealing with is only defined by
two complexes and the shape of the scattefessich as in
the example shown in Fig. 4n other words, the scatterers ~ The method of fictitious charges as applied to the annex
lie in the volume area, support of the above function problem described above consists in representing the poten-
It is therefore easy to shof23] that in this case the reso- tjal by an approximate potential with an error as small as we
lution of the two annex problemsk) introduced in the want. This approximate potential is created by two families
fundamental theorem as mentioned earlier amounts to l00kof charges(they do not actually exist The first ones are
ing for the functionV; solutions of the following system |ocated in(); and radiate in(),, and the second ones are
where derivatives are taken in the usual sense: located inQ), and radiate i}, . Each of these charges veri-
fies a Laplace equation i¥? with periodic conditions, and
they are chosen such that the potential verifies the boundary
conditions that appear in EqL). It is worth noting that we
= —[elpn;, (1) de'Fermine the amplitudes thanks to a .Ie_ast—square meth.od.
I This method allows us to check the validity of the approxi-
mate potential and thus the one of the approximate homog-
[Vi]r=0, enized permittivity. In order to illustrate the capabilities of
our method, we compute the homogenized permittivity with
with elliptical scatterers described in Fig. 5.
) In such a case, in the TE polarizatieq,, is merely the
_|er in &y, (2  @average of the permittivity in the celi? and thus does not
g, In Oy, depend on the angl@. Conversely, in the TM polarization,

1. Preliminary remarks

2. Some examples for the TM polarization

AV;=0 in YAT,

v,
®n
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Y2

YQ

)

€2

FIG. 5. Unit cellY2=]0;1]? with an elliptical scatterer charac-
terized by the major and the minor ax@gndb and the angl&.

Anom is described by three coefficients;;, ¢5,, and i,
which depend on the anglg

®11(0)
W(0)

¥(0)

Anoni 0)= @2 9)) .

(4)

Besides, when the permittivity; ande, are real these co-
efficients are obviously real and consequently,,, can write
as follows:

em(0)
0 em(0)

Anond ) =R(¢) )R(—qo), 5

whereR(¢) is an anglep rotation matrix andt,, ande, are
chosen in such a way that,>¢,,. In Figs. 6-8, we show
the curves ok =(&), &m, em, anden,=(e 1)~ ! versus
¢ for an elliptical scatterer of equatiors/a+x5/b=1 with
a=0.4 andb=0.2 (normalized by the unit length of?) and
for the relative permittivitiess;=1 ande,=4, 9, and 16.
Finally, we drawe versusé for the same ellipsécf. Fig. 9.

Special attention must be drawn about the fact that this last 2r
curve only depends on the geometry. It is the same curve

whatever the relative permittivities; ande,.

B. Multiphase media

In this section, we give a numerical illustration of the

PHYSICAL REVIEW E67, 026610 (2003

el g,md

swe((-))
£y(®)
€ m(e)
€ar®)

12 L L L L L i L L
o 5 10 15 20 25 30 35 40 45
L)

FIG. 6. Maximum g),) and minimum €,,) eigenvalues of the
tensor of permittivityAyo, in H; for elliptical scatterers versus the
orientation of these ellips€®, expressed in degreeJhe ellipsis is
characterized by the equatiof/a+x3/b=1 with a=0.4 andb
=0.2 (normalized by the unit length of?) and filled with a dielec-
tric of relative permittivitye,=4. In the same figure we draw the
arithmetic averages,,=(c) and the harmonic averagep,
=(e"HL

To get the corresponding variational equation f(z‘?erI,
one has to replace by £ 1. In the discrete formulation the
basic cell is meshed with triangles and node elements are
used for the scalar fieldg; :

n
_ k H 2
Vi=2 Biw(xy) in Y2, W
g=1 ;29
a2 r T
28
s—a ev(o)
281 &—n s;(ee)
24l — Em(e)
)
a2
13%
18f 1
1.

L " ) L n L L L
5 10 15 20 25 30 35 40 45
L]

duality correspondence between the annex problems g 7. Maximum ) and minimum ¢,,) eigenvalues of the

(P (P}) of Secs. Il Aand 11 B for multiphase media is a
continuous functiop thanks to the finite-element method.

Multiplying div,[eV[(V;—Y;)] by V; in (PJA), je{1,2, and
integrating by parts over the basic c¥ff leads to the weak
formulation

((WIV(Vi=yi)]-VVj)y2=0. (6)

tensor of permittivityAyo, in H;, for elliptical scatterers versus the
orientation of these ellipsd#, expressed in degreed he ellipsis is
characterized by the equatiof/a+x3/b=1 with a=0.4 andb
=0.2 (normalized by the unit length of?) and filled with a dielec-
tric of relative permittivitye,=9. In the same figure we draw the

arithmetic averages,,=(¢) and the harmonic average,
=(e"HL
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g1 !2-15
T T

€ (0)
£,,8)
€.(8)
€09

® % % @ s
FIG. 8. Maximum §),,) and minimum ¢,) eigenvalues of the
tensor of permittivityA,o, in H; for elliptical scatterers versus the
orientation of these ellipsd®, expressed in degreedJhe ellipsis is
characterized by the equatiof/a+x3/b=1 with a=0.4 andb
=0.2 (normalized by the unit length of?) and filled with a dielec-
tric of relative permittivitye,=9. In the same figure we draw the
arithmetic averages,,=(¢) and the harmonic average,,

=(e"HL

whereﬂ!‘ denotes the nodal value of the componénof the
multiscalar potentiaV. Besideswy are basis functions of
first-order finite elements. TheeTDP software[30] has been

PHYSICAL REVIEW E 67, 026610 (2003

FIG. 10. Isovalues of the compone¥if of the (dimensionless
multiscalar fieldV in a unit basic cellY?, corresponding to a mi-
crostructure of silicdrelative permittivity e,(x,y)=1.25] with a
periodic arrangement of circular inclusions filled with a material
described by a continuous profile of relative permittivity(x,y)
=2+2(x—0.5)%/0.5+ (y—0.5)?/0.2.

strictly null: this artificial anisotropy induced by the mesh of
the structure indicates the order of magnitude of the numeri-
cal error. Let us emphasize that we can deal with every type
of geometry in the basic cell and thattan even be a tensor

used to set up the finite-element problem with some periodtprovided it is symmetric, coercive, and boungled
icity conditions imposed on the field on opposite sides of the

basic cellY2. From the numerical resolution of E¢6), we
derive

—2.5388076¢10°°
5.1888463

4.4078046

Anom=| _ 5 5388076105
8

with (e)y2=5.3745734 (see Fig. 10 for the associated
eigenfield. We note that the off-diagonal terms are not

4

6 - 4(8)

35+

3k

L L . L L
20 25 30 38 40
L]

; 1‘0 !‘5 45

FIG. 9. Angle ¢ being the rotation of the optical axis ard
defining the orientation of the elliptical scattefeoth expressed in
degreel we draw the difference betweenand 6 as a function of
6. This curve does not depend on neither the relative permittivity

nor e.

VI. MULTISCALE EXPANSION VERSUS MULTIPOLE
METHOD

If we now consider a 2D periodic two-phase medium with
circular inclusions, our results give also some information on
the corresponding effective properties of the material derived
as a limit case of the multipole expansidong-wavelength
and dilute composide In the classical book by Bensoussan,
Lions, and Papanicolaoj81], a lemma states that when it
exists, the tensor

2
1 dw]

EE(O),

(€)

-1 _
€hompq™

defines the effective mass tensor of the first bandknoting

the so-called Bloch vector. It is worth noting that there is
therefore no contradiction between our duality results and
the work by McPhedraet al.[32], which states that the first
dynamic correction to the Lorentz-Lorenz formula damages
the symmetry of Keller’s theorem. Besides, we have no such
restriction as a small inclusion.

Also, some effective properties were obtained by Yardley
et al. [33] where a uniform electrostatic field is imposed
upon a rectangular array of elliptical cylinders embedded in a
matrix of unit dielectric constants. These authors used a gen-
eralization of the Rayleigh's multipole technique to include
geometries other than circles or spheres. They numerically
verified Keller's reciprocal relationshif2] for this electro-
static problem. Our approach applies straightforwardly to the
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case of a rectangular basic cell, and our numerical results VII. CONCLUSION

proved to be in good agreement with that of Yardéhyal. To our knowledge, this paper presents the first theoretical

[33]. Finally, some bou_ndary _coIIocau_on method Was USeGynd numerical achievements of duality relations for the ho-
by Lu [34] to study anlsotroplc.eﬁegtlve conductivities of mogenized Maxwell system for noncircular inclusiofvia
sugh rectangu]ar arrays of elliptic cylmders when the aspecj,o MFQ and continuous permittivity profilegvith FEM).
ratio of the ellipse and the edge length ratio of the array arerpe |inks with effective transport properties have been dis-

varying. Here we emphasize that our numerical methods akyssed. The authors are looking forward for analogous dual-
low us to check the validity of Keller’s reciprocal theorem ity relations for ferromagnetic materigl85].

for inclusions of arbitrary shappwith method of fictitious

chargeSMFC)] and with continuity profilegwith finite ele-

ment method FEM)], within less than 1%. Our algorithms ACKNOWLEDGMENTS

are fast, accurate, and they are stable when the inclusions are Many thanks are due to Professor G. Bouchitie pro-
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