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Duality relation for the Maxwell system
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This paper is intended to establish a link between the vector Maxwell system for three-dimensional~3D! and
2D finite photonic crystals in the low-frequency limit. For this, we generalize the classical results of Keller and
Dykhne~chessboard problem! to periodic media described by piecewise continuous permittivity profiles: our
theorem enlights the result of Mendelson~polycrystalline and multiphase media! in the framework of homog-
enization theory of elliptic operators.In fine, we give illustrative examples by using both integral equation and
variational approaches via the so-called method of fictitious charges and finite-element method.

DOI: 10.1103/PhysRevE.67.026610 PACS number~s!: 41.20.2q, 42.25.2p, 78.20.Bh, 41.20.Cv
m
f
. A

o
te
o

en

ld

b
liz
e

or
an

e

a
o

he

p

om

a

o

ter-
iso-
an
nd
s
nd

tic-
e-

ions
nd
ns
ve

il-

of
lled
in
The

ors

pers
ay
-
e
the

o-
ts

ic

ls

-
e-
I. INTRODUCTION

Some mathematical works devoted to the theory of co
posites go back to Wiener@1# by interchanging the roles o
the background and matrix in the Lorentz-Lorenz formula
classical theorem is that of Keller@2#, which found a relation
between the transverse effective conductivity of an array
cylinders and the conductivity when the phases are in
changed. The essence of Keller’s theorem is that if in a tw
dimensional~2D! potential problem for Laplace’s equationu
is a solution for a problem with one type of inclusion, th
its Cauchy-Riemann partnerv is the solution for the problem
with the dielectric constant inverted and the electric fie
rotated by 90°. In 1970, Dykhne@3#, using the fact that a
divergence-free field when rotated locally at each point
90° produces a curl-free field and vice versa could genera
Keller’s result to isotropic multiphase and polycrystallin
media. He noted that the duality relations implied exact f
mulas for the conductivity of phase-interchange-invari
two-phase media~such as checkerboards! and for polycrys-
tals constructed from a single crystal. In Sec. III, we gen
alize the results of Keller@2#, Nevard and Keller@4#, and
Dykhne@3#: we express the homogenized permittivity of
two-dimensional electrostatic problem in terms of the h
mogenized inverse permittivity up to a rotation of 90°. In t
particular case of a checkerboard, i.e., a planar body
square symmetry characterized by a piecewise constant
mittivity which takes the values«1 and «2 , it can be then
deduced the well-known formula@3#

«eff5A«1«1.

This formula has been generalized by Kozlov in the rand
case and also the asymptotic behavior of«eff when «1 is
small in term of percolation thresholds@5#. This formula was
independently derived by Golden and Papanicolaou@6#.

The pioneering works of Keller and Dykhne stimulated
large body of research: Berdichevski@7# derived an exact
formula for the effective shear modulus of a checkerboard
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two incompressible phases. The duality and phase in
change relations of Berdichevski were extended to an
tropic composite materials by Helsing, Milton, and Movch
@8# together with numerical results of high accuracy a
Nemat-Nasser and Ni@9# obtained duality transformation
for three-dimensional anisotropic bodies with stress a
strain fields independent of thex3 coordinate. Milton and
Movchan@10# found an equivalence between planar elas
ity problems and antiplane elasticity problems in inhomog
neous bodies. These results and additional duality relat
were then discussed in detailed by Helsing, Milton, a
Movchan@8#. A plethora of three-dimensional exact relatio
from pyroelectricity to thermopiezoelectric composites ha
recently been given by Grabovsky, Milton, and Sage@11#.

Among other things, when no explicit formulas are ava
able, it is an important matter to havea priori estimates on
the effective matrix in term of the statistical properties
each component of the composite. This is the so-ca
theory of bounds which motivated a lot of contributions
several fields of physics, mechanics, and mathematics.
pioneering work was done by Hashin and Shtrikman in@12#
where a complete description of all possible effective tens
was derived. This result was proved later by Tartar@13# who
extended the result to the anisotropic case. Then many pa
appeared in the literature among them, of which we m
quote Benveniste@14# who obtained bound results in piezo
electricity and Francfort@15# who made a correspondenc
between the equations of incompressible elasticity and
duality relations for conductivity.

To conclude, the rigorous mathematical theory of the h
mogenization of elliptic operators with random coefficien
proposed by Jikov, Kozlov, and Oleinik@16# is closely re-
lated to the Bergman-Milton theory of bounds@17–21# who
obtained some bounds for the effective modulli of period
and random structures.

II. LOW-FREQUENCY LIMIT OF THE VECTOR
MAXWELL SYSTEM

The homogenization of 3D dielectric photonic crysta
has been independently performed by Ke-Daet al. with the
Rayleigh method~two-phase media with spherical inclu
sions! @22# and by Guenneau and Zolla with the multipl
©2003 The American Physical Society10-1
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scale method~media described by coercive and bounded p
mittivity profiles! @23#. The last authors use a limit analys
technique in which one lets the periodh tend to-zero and,
hence, the number of elementary cells to infinity, while ke
ing the wavelengthl52p/k0 and the domainV f containing
the cells fixed~see Fig. 1!.

Moreover, an oscillating magnetic fieldHh is defined as
the unique solution of the problem (Ph

H) in @L loc
2 (R3)#3:

~Ph
H!H ~ i! rot~«h

21rot Hh!2k0
2Hh50,

~ ii ! div Hh50,

where the diffracted magnetic fieldHh
d5

def

Hh2H inc satisfies
Silver-Müller radiation conditions: namely,

Hh
d5OS 1

uxu D ,
x

uxu
3rot Hh

d1 ik0Hh
d5oS 1

uXu D ,

and where «h(x)5«(x/h), « being Y3 periodic

(Y5
def

#0,1]). It can be proved thatHh has a two-scale expan
sion of the form

;xPV f ,

Hh~x!5H0S x,
x

h D1hH1S x,
x

h D1h2H2S x,
x

h D1¯ ,

whereH i :V f3Y3°C3 is a function of six variables, inde
pendent ofh, such that for allx in V f , H i(x,•) is Y3 peri-
odic.

The salient consequence is that whenh tends to zero, the
Hh solution of the problem (Ph

H), converges in@L loc
2 (R3)#3

to the unique solutionH of the homogenized problem (Phom
H )

@23#:

~Phom
H !H ~ iii ! rot~«hom

21 rot H!2k0
2H50,

~ ii ! div H50,

where the diffracted magnetic fieldHd5
def

H2H inc satisfies
Silver-Müller radiation conditions and where

FIG. 1. The fixed setV f and its ‘‘scaffolding’’Vh for a fixedh.
02661
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«hom5^«~y!@ I 2¹V~y!#&Y3 in V f ,

the notation̂ f &Y3 denoting the average off in Y3. Besides,
V5(V1 ,V2 ,V3), whereVj ( j P$1,2,3%) is the unique solu-
tion in H]

1 (Y3) of the null mean of one of the three followin
problems (Kj ) of electrostatic type:

~Kj !:2div$«~y!@¹„Vj~y!2yj…#%50.

A. TM polarization deduced from the 3D case

When « does not depend on the third component
namely,«(y)5«(y1 ,y2)—we get

«hom5S Ahom 0

0

0 0 ^«&Y2

D ,

whereAhom is the 232 matrix given by

Ahom5S ^«&Y22^«]1V1&Y2 2^«]1V2&Y2

2^«]2V1&Y2 ^«&Y22^«]2V2&Y2
D ,

andVj , j P$1,2%, the unique solution inH]
1 (Y2)/R of

~Pj
A!:div$«~y!@¹„Vj~y!2yj…#%50.

WhenV f is invariant itself with respect to the third compo
nent and for the particular case of TM polarization@H
5u(x1 ,x2)e3#, it is clear that the result written above alway
holds.

B. TM polarization via 2D homogenization

Let us now consider the TM fieldHh5uh(x1 ,x2)e3 ,
whereuh is the unique solution of the scalar wave equati

divF«21S x,
x

h D¹uhG1k0
2uh50,

with Sommerfeld radiation conditions

uh
d5O~1/Auxu!, ~uh

d2 ik0]uh
d /]x!5o~1/Auxu!.

When h tends to 0, uh tends in L loc
2 (R2) to the u

5u(x1 ,x2) unique solution of

div~Ahom8 ¹u!1k0
2u50,

where the diffracted fieldud satisfies the radiation condition
and whereAhom8 is given by

Ahom8 5S ^«21&Y22^«21]1V18&Y2 2^«21]1V28&Y2

2^«21]2V18&Y2 ^«21&Y22^«21]2V28&Y2
D ,

with Vj8 the unique solution inH]
1 (Y2)/R of
0-2
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~Pj
B!:div$«21~y!@¹„Vj8~y!2yj…#%50,

with j P$1,2%.

III. DUALITY CORRESPONDENCES BETWEEN 3D AND
2D ANNEX PROBLEMS

We are facing a paradox: the annex problems in Se
II A and II B involve, respectively, the permittivity and it
inverse. To explain this discrepancy, we establish the follo
ing subtle property.

Proposition:

rot$«hom
21 rot@u~x1 ,x2!e3#%

52divFRS p

2 DAhom
21 RS 2

p

2 D¹uGe3 ,

whereR(p/2) is the rotation matrix of anglep/2: namely,

R~p/2!5S 0 1

21 0D .

Proof: Let M be a symmetric matrix defined as

M5S m11 m 0

m m22 0

0 0 m33

D 5S M̃ 0

0 m33
D ;

we get

rot$M rot@u~x1 ,x2!e3#%52F ]

]x1
S m22

]u

]x1
2m

]u

]x2
D

1
]

]x2
S m11

]u

]x2
2m

]u

]x1
D Ge3 .

Furthermore, letM 8 be defined as

M 85S m118 m128

m218 m228
D ,

we have

rot$M rot@u~x1 ,x2!e3#%52div~M 8¹u!e3 ,

if and only if

m118
]u

]x1
1m128

]u

]x2
5m22

]u

]x1
2m

]u

]x2
,

m218
]u

]x1
1m228

]u

]x2
5m11

]u

]x2
2m

]u

]x1
,

which is true if M 85R(p/2)M̃R(2p/2). As a conclusion,
the results found in Secs. II A and II B are consistent if a
only if

Ahom8 5RS p

2 DAhom
21 RS 2

p

2 D ,
02661
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i.e.,

Ahom8 5
Ahom

det~Ahom!
.

This remarkable result—which was derived by Mend
son @24# and Nevard and Keller@4# in another homogeniza
tion framework—can be straightforwardly proved thanks
the following result due to Bouchitte´ @25,26#.

Lemma. let Ahom and Ahom8 be the homogenized matrice
associated towj and wj8 ( j P$1,2%) unique solutions in
H]

1 (Y2)/C of the four following problems:

div@a~y!¹„yj1wj~y!…#50,

div@a8~y!¹„yj1wj8~y!…#50,

wherea85a21. Then, we have

Ahom8 5
Ahom

det~Ahom!
.

Proof. We note thatAhom is given by the problem of mini-
mization,

1

2
Ahomj•j5 inf

v~y!PH]
1

~Y2!/C
H 1

2 EY2
a~y!uj1¹v~y!u2d2yJ ,

andAhom
21 by its dual variational problem

1

2
Ahom

21 j* •j* 5 inf
q~y!PL]

2
~Y2!

H 1

2 EY2
a21~y!uj* 1qu2d2y,

divyq~y!50, and E
Y2

q~y!d2y50J .

Besides, we know that every divergence free field
L]

2 (Y2) is the gradient of a function ofH]
1 (Y2), up to a

rotation, provided its average is null@16#. Therefore, there
exists a functionvPH]

1 (Y2) ~up to an additive constant!
such that

q~y!5R„¹yv~y!…,

whereR5
def

R(p/2). Noting that

uj* 1q~y!u25uRj* 1Rq~y!u25uRj* 1¹v~y!u2,

we get
0-3
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1

2
Ahom

21 j* •j*

5 inf
v~y!PH]

1
~Y2!/C

H 1

2 EY2
a21~y!uRj* 1¹v~y!u2d2yJ .

To conclude, we note thatAhom8 is given by the following
problem:

1

2
Ahom8 z•z5 inf

v~y!PH]
1

~Y2!/C
H 1

2 EY2
a21~y!uz1¹v~y!u2d2yJ .

IV. MISCELLANEOUS APPLICATIONS

In this section, we illustrate our duality result with a r
view of classical phase interchange identities such as
chessboard problem for two-phase media and its variant

A. Two-phase media

Let V f be a bounded photonic crystal filled with a pe
odic heterogeneous material with two optical indicesn1

5A«1 andn25A«2. Thanks to the previous proposition, w
can deduce from the computation of the effective ma
Ahom(@«1 ,«2#) the effective matrixAhom(@«2 ,«1#) corre-
sponding to the same structure with the reverse contrast~cf.
Fig. 2!. For this we use the general property

Ahom~l«!5lAhom~«! for any fixed l in C,

and the duality relation. Indeed, we have

Ahom~@«2 ,«1# !5«1«2Ahom~@«1
21,«2

21# !

and, then,

Ahom~@«2 ,«1# !5
«1«2

detAhom~@«1 ,«2# !
Ahom~@«1 ,«2# !.

In particular, for lossless dielectric materials, we have

FIG. 2. Derivation of the effective matrix for an interchang
contrast between matrix and inclusions.
02661
e

x

Ahom~@«1 ,«2# !5R~w!S «M 0

0 «m
DR~2w!,

where R(w) is the rotation matrix of anglew and where
«M.«m . The relation between the two matrice
Ahom(@«1 ,«2#) and Ahom(@«2 ,«1#) leads to the following
property:

Ahom~@«2 ,«1# !5R~w!S «M8 0

0 «m8
D R~2w!,

with «M8 5«1«2 /«m and«m8 5«1«2 /«M ~note that«M8 .«m8 ).

B. Checkerboard problem

The checkerboard problem is obviously a two-phase pr
lem @cf. Fig. 3~a!#. Besides, for a squared symmetry~it is the
case for the checkerboard problem up to a translation! it can
be easily proved thatAhom is equal to R(p/2)AhomR
(2p/2) and consequentlyAhom is proportional to the identity
matrix ~the effective permittivity in TM polarization is there
fore isotropic!:

Ahom~@«1 ,«2# !5Ahom~@«2 ,«1# !5ahomI .

The previous result shows that

Ahom~@«1 ,«2# !5
«1«2

detAhom~@«1 ,«2# !
Ahom~@«1 ,«2# !,

and consequently detAhom(@«1 ,«2#)5ahom
2 5«1«2 . Finally,

we rediscover the result of Dykhne@3#:

Ahom5A«1«2I .

C. Variant of the checkerboard problem

Let us now consider a three-phase problem character
by three permittivities«1 , «2 , and «g @cf. Fig. 3~b!#. The
associated homogenized matrix is thenAhom(@«1 ,«2 ,«g#).
Using the technics described above, we get the relation

AhomS F«2 ,«1 ,
«1«2

«g
G D5

«1«2Ahom~@«1 ,«2 ,«g# !

detAhom~@«1 ,«2 ,«g# !
,

FIG. 3. Unit cellY2 for Dykhne’s checkerboard problem@~a! on
the left# and its variant@~b! on the right#.
0-4
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which becomes very interesting if«g5A«1«2. In particular,
when the cellY2 has a squared symmetry as shown in Fig
we obtain

Ahom5A«1«2I 5«gI .

It is worth noting that considering a four-homogeneou
medium problem characterized by four permittivities«1 , «2
and«g1 , «g2 deduced from Figs. 3~a! and 3~b! by substitut-
ing Fig. 3~b! into Fig. 3~a! would merely lead to

AhomS F«2 ,«1 ,
«1«2

«g1
,
«1«2

«g2
GD5

«1«2Ahom~@«1 ,«2 ,«g1 ,«g2# !

detAhom~@«1 ,«2 ,«g1 ,«g2# !
,

which only simplifies in the trivial case«g15«g25A«1«2.
Nevertheless, one can still imagine some two phase vari
of Dykhne’s checkerboard problem as was done by Sc
gasser@27,28# who noticed that there are some anisotro
two-dimensional microstructures such that interchanging
phases produces the same effect as rotating the structu
90° and thereby leads to Dykhne’s formula.

V. NUMERICAL RESOLUTION OF THE ANNEX
PROBLEMS

A. Method of fictitious charges as applied
to the two-phase media

To illustrate our purpose, we now make use of the meth
of fictitious charges~its dynamic analogue is the method
fictitious sources@29#!, which takes benefit of the piecewis
constant permittivity and of its periodicity to solve nume
cally the annex problems.

1. Preliminary remarks

In most applications, one has just to consider a tw
valued piecewise constant permittivity in the unique cellY2

and, more precisely, the relative permittivity yields«2 in
what one usually calls the scattererSand«1 elsewhere. Con-
sequently, the problem we are dealing with is only defined
two complexes and the shape of the scatterersG such as in
the example shown in Fig. 4~in other words, the scatterer
lie in the volume area, support of the above function!.

It is therefore easy to show@23# that in this case the reso
lution of the two annex problems (Kj ) introduced in the
fundamental theorem as mentioned earlier amounts to lo
ing for the functionVj solutions of the following system
where derivatives are taken in the usual sense:

DVi50 in Y2\G,

F« ]Vi

]n G
G

52@«#Gni , ~1!

@Vi #G50,

with

«5H «1 in V1 ,

«2 in V2 ,
~2!
02661
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where@ f #G denotes the jump off across the boundaryG, and
ni , i P$1,2,3%, denotes the projection on the axisei of a
normal of G. Moreover, the calculus of the anisotropic pe
mittivity can be simplified. Indeed, it had been shown@23#
that the coefficientsw i , j are given by the following simple
integral:

w i , j5@«#GE
G
Vinjds. ~3!

Let us remark thatVi is well defined onG because it does no
suffer a jump across the boundary of the scatterer. This
formula is very important for numerical implementations:
is not necessary to compute the gradient ofVi ~which gives
rise to numerical inaccuracy! to perform the calculus of the
homogenized permittivity.

2. Some examples for the TM polarization

The method of fictitious charges as applied to the an
problem described above consists in representing the po
tial by an approximate potential with an error as small as
want. This approximate potential is created by two famil
of charges~they do not actually exist!. The first ones are
located inV1 and radiate inV2 , and the second ones ar
located inV2 and radiate inV1 . Each of these charges ver
fies a Laplace equation inY2 with periodic conditions, and
they are chosen such that the potential verifies the boun
conditions that appear in Eq.~1!. It is worth noting that we
determine the amplitudes thanks to a least-square met
This method allows us to check the validity of the appro
mate potential and thus the one of the approximate hom
enized permittivity. In order to illustrate the capabilities
our method, we compute the homogenized permittivity w
elliptical scatterers described in Fig. 5.

In such a case, in the TE polarization«hom is merely the
average of the permittivity in the cellY2 and thus does no
depend on the angleu. Conversely, in the TM polarization

FIG. 4. Unit cellY2 with a scatterer characterized by the cur
G.
0-5
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Ahom is described by three coefficientsw11, w22, and c,
which depend on the angleu:

Ahom~u!5S w11~u! c~u!

c~u! w22~u!
D . ~4!

Besides, when the permittivity«1 and «2 are real these co
efficients are obviously real and consequentlyAhom can write
as follows:

Ahom~u!5R~w!S «M~u! 0

0 «m~u!
DR~2w!, ~5!

whereR(w) is an anglew rotation matrix and«M and«m are
chosen in such a way that«M.«m . In Figs. 6–8, we show
the curves of«ave5^«&, «m , «M , and«har5^«21&21 versus
u for an elliptical scatterer of equation,x1

2/a1x2
2/b51 with

a50.4 andb50.2 ~normalized by the unit length ofY2) and
for the relative permittivities«151 and «254, 9, and 16.
Finally, we draww versusu for the same ellipse~cf. Fig. 9!.
Special attention must be drawn about the fact that this
curve only depends on the geometry. It is the same cu
whatever the relative permittivities«1 and«2 .

B. Multiphase media

In this section, we give a numerical illustration of th
duality correspondence between the annex proble
(Pj

A) (Pj
B) of Secs. II A and II B for multiphase media~« is a

continuous function!, thanks to the finite-element method.
Multiplying divy@«¹y(Vi2yi)# by Vj in (Pj

A), j P$1,2%, and
integrating by parts over the basic cellY2 leads to the weak
formulation

^«~y!@¹y~Vi2yi !#•¹Vj&Y250. ~6!

FIG. 5. Unit cellY25]0;1]2 with an elliptical scatterer charac
terized by the major and the minor axesa andb and the angleu.
02661
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To get the corresponding variational equation for (Pj
B),

one has to replace« by «21. In the discrete formulation the
basic cell is meshed with triangles and node elements
used for the scalar fieldsVi :

Vi5(
k

n

b i
kwk

n~x,y! in Y2, ~7!

FIG. 6. Maximum («M) and minimum («m) eigenvalues of the
tensor of permittivityAhom in H i for elliptical scatterers versus th
orientation of these ellipses~u, expressed in degrees!. The ellipsis is
characterized by the equationx1

2/a1x2
2/b51 with a50.4 andb

50.2 ~normalized by the unit length ofY2) and filled with a dielec-
tric of relative permittivity«254. In the same figure we draw th
arithmetic average«ave5^«& and the harmonic average«har

5^«21&21.

FIG. 7. Maximum («M) and minimum («m) eigenvalues of the
tensor of permittivityAhom in H i for elliptical scatterers versus th
orientation of these ellipses~u, expressed in degrees!. The ellipsis is
characterized by the equationx1

2/a1x2
2/b51 with a50.4 andb

50.2 ~normalized by the unit length ofY2) and filled with a dielec-
tric of relative permittivity«259. In the same figure we draw th
arithmetic average«ave5^«& and the harmonic average«har

5^«21&21.
0-6
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whereb i
k denotes the nodal value of the componentVi of the

multiscalar potentialV. Besides,wk
n are basis functions o

first-order finite elements. TheGETDPsoftware@30# has been
used to set up the finite-element problem with some per
icity conditions imposed on the field on opposite sides of
basic cellY2. From the numerical resolution of Eq.~6!, we
derive

Ahom5S 4.4078046 22.538807631025

22.538807631025 5.1888463 D
~8!

with ^«&Y255.374 573 4 ~see Fig. 10 for the associate
eigenfield!. We note that the off-diagonal terms are n

FIG. 8. Maximum («M) and minimum («m) eigenvalues of the
tensor of permittivityAhom in H i for elliptical scatterers versus th
orientation of these ellipses~u, expressed in degrees!. The ellipsis is
characterized by the equationx1

2/a1x2
2/b51 with a50.4 andb

50.2 ~normalized by the unit length ofY2) and filled with a dielec-
tric of relative permittivity«259. In the same figure we draw th
arithmetic average«ave5^«& and the harmonic average«har

5^«21&21.

FIG. 9. Angle w being the rotation of the optical axis andu
defining the orientation of the elliptical scatterer~both expressed in
degrees!, we draw the difference betweenw andu as a function of
u. This curve does not depend on neither the relative permittivity«1

nor «2 .
02661
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strictly null: this artificial anisotropy induced by the mesh
the structure indicates the order of magnitude of the num
cal error. Let us emphasize that we can deal with every t
of geometry in the basic cell and that« can even be a tenso
~provided it is symmetric, coercive, and bounded!.

VI. MULTISCALE EXPANSION VERSUS MULTIPOLE
METHOD

If we now consider a 2D periodic two-phase medium w
circular inclusions, our results give also some information
the corresponding effective properties of the material deri
as a limit case of the multipole expansion~long-wavelength
and dilute composite!. In the classical book by Bensoussa
Lions, and Papanicolaou@31#, a lemma states that when
exists, the tensor

«hom,pq
21 5

1

2

]v1
2

jpjq
~0!, ~9!

defines the effective mass tensor of the first band,j denoting
the so-called Bloch vector. It is worth noting that there
therefore no contradiction between our duality results a
the work by McPhedranet al. @32#, which states that the firs
dynamic correction to the Lorentz-Lorenz formula damag
the symmetry of Keller’s theorem. Besides, we have no s
restriction as a small inclusion.

Also, some effective properties were obtained by Yard
et al. @33# where a uniform electrostatic field is impose
upon a rectangular array of elliptical cylinders embedded i
matrix of unit dielectric constants. These authors used a g
eralization of the Rayleigh’s multipole technique to inclu
geometries other than circles or spheres. They numeric
verified Keller’s reciprocal relationship@2# for this electro-
static problem. Our approach applies straightforwardly to

FIG. 10. Isovalues of the componentV1 of the ~dimensionless!
multiscalar fieldV in a unit basic cellY2, corresponding to a mi-
crostructure of silica@relative permittivity «1(x,y)51.25] with a
periodic arrangement of circular inclusions filled with a mater
described by a continuous profile of relative permittivity«2(x,y)
5212A(x20.5)2/0.51(y20.5)2/0.2.
0-7
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case of a rectangular basic cell, and our numerical res
proved to be in good agreement with that of Yardleyet al.
@33#. Finally, some boundary collocation method was us
by Lu @34# to study anisotropic effective conductivities o
such rectangular arrays of elliptic cylinders when the asp
ratio of the ellipse and the edge length ratio of the array
varying. Here we emphasize that our numerical methods
low us to check the validity of Keller’s reciprocal theore
for inclusions of arbitrary shape@with method of fictitious
charges~MFC!# and with continuity profiles@with finite ele-
ment method~FEM!#, within less than 1%. Our algorithm
are fast, accurate, and they are stable when the inclusion
close to touching~they can even touch the edges of the ba
cell!. Furthermore, we can treat the case of many inclusi
in the unit cell and thereby have access to any kind of
ometry for the array~e.g., hexagonal array!.
f
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VII. CONCLUSION

To our knowledge, this paper presents the first theoret
and numerical achievements of duality relations for the
mogenized Maxwell system for noncircular inclusions~via
the MFC! and continuous permittivity profiles~with FEM!.
The links with effective transport properties have been d
cussed. The authors are looking forward for analogous d
ity relations for ferromagnetic materials@35#.
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